Part Number Hot Search : 
IS42S ADUM1210 2060C MC10131P 3705Z 25Q16 SD114 AU9520
Product Description
Full Text Search
 

To Download IRF7904PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 07/10/06 IRF7904PBF hexfet   power mosfet benefits  very low r ds(on) at 4.5v v gs  low gate charge  fully characterized avalanche voltage and current  20v v gs max. gate rating  improved body diode reverse recovery  100% tested for r g  lead-free applications  dual so-8 mosfet for pol converters in notebook computers, servers, graphics cards, game consoles and set-top box v dss i d 30v q1 16.2m @v gs = 10v 7.6a q2 10.8m @v gs = 10v 11a r ds(on) max absolute maximum ratings parameter q1 max. q2 max. units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v 7.6 11 i d @ t a = 70c continuous drain current, v gs @ 10v 6.1 8.9 a i dm pulsed drain current 61 89 p d @t a = 25c power dissipation 1.4 2.0 w p d @t a = 70c power dissipation 0.9 1.3 linear derating factor 0.011 0.016 w/c t j operating junction and c t stg storage temperature range thermal resistance parameter q1 max. q2 max. units r jl junction-to-drain lead  20 20 c/w r ja junction-to-ambient  90 62.5 20 30 -55 to + 150 so-8                
  2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage q1&q2 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient q1 ??? 0.024 ??? v/c q2 ??? 0.024 ??? q1 ??? 11.4 16.2 r ds(on) static drain-to-source on-resistance ??? 14.5 20.5 m ? q2 ??? 8.6 10.8 ??? 10 13 v gs(th) gate threshold voltage q1&q2 1.35 ??? 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient q1 ??? -5.0 ??? mv/c q2 ??? -5.0 ??? i dss drain-to-source leakage current q1&q2 ??? ??? 1.0 a q1&q2 ??? ??? 150 i gss gate-to-source forward leakage q1&q2 ??? ??? 100 na gate-to-source reverse leakage q1&q2 ??? ??? -100 gfs forward transconductance q1 17 ??? ??? s q2 23 ??? ??? q g total gate charge q1 ??? 7.5 11 q2 ??? 14 21 q gs1 pre-vth gate-to-source charge q1 ??? 2.2 ??? q1 q2 ??? 3.7 ??? v ds = 15v q gs2 post-vth gate-to-source charge q1 ??? 0.6 ??? nc v gs = 4.5v, i d = 6.1a q2 ??? 1.1 ??? q gd gate-to-drain charge q1 ??? 2.5 ??? q2 q2 ??? 4.8 ??? v ds = 15v q godr gate charge overdrive q1 ??? 2.2 ??? v gs = 4.5v, i d = 8.8a q2 ??? 4.4 ??? q sw switch charge (q gs2 + q gd ) q1 ??? 3.1 ??? q2 ??? 5.9 ??? q oss output charge q1 ??? 4.5 ??? nc q2 ??? 9.1 ??? r g gate resistance q1 ??? 3.2 4.8 ? q2 ??? 2.9 4.4 t d(on) turn-on delay time q1 ??? 6.9 ??? q2 ??? 7.8 ??? t r rise time q1 ??? 7.3 ??? i d = 6.1a q2 ??? 10 ??? ns t d(off) turn-off delay time q1 ??? 10 ??? q2 ??? 15 ??? t f fall time q1 ??? 3.2 ??? i d = 8.8a q2 ??? 4.6 ??? c iss input capacitance q1 ??? 910 ??? q2 ??? 1780 ??? c oss output capacitance q1 ??? 190 ??? pf q2 ??? 390 ??? c rss reverse transfer capacitance q1 ??? 94 ??? q2 ??? 180 ??? avalanche characteristics parameter q1 max. q2 max. units e as single pulse avalanche energy 140 250 mj i ar avalanche current  6.1 8.8 a diode characteristics parameter min. typ. max. units i s continuous source current q1 ??? ??? 1.8 a (body diode) q2 ??? ??? 2.5 i sm pulsed source current q1 ??? ??? 61 a (body diode)  q2 ??? ??? 88 v sd diode forward voltage q1 ??? ??? 1.0 v q2 ??? ??? 1.0 t rr reverse recovery time q1 ??? 11 17 ns q2 ??? 16 24 q rr reverse recovery charge q1 ??? 2.6 3.9 nc q2 ??? 6.9 10 v gs = 4.5v, i d = 6.1a  v gs = 4.5v, i d = 8.8a  v ds = 15v, i d = 8.8a v dd = 15v, v gs = 4.5v v gs = 10v, i d = 11a  q1: v ds = v gs , i d = 25a v ds = 15v, i d = 6.1a v ds = 24v, v gs = 0v, t j = 125c v dd = 15v, v gs = 4.5v ??? v ds = 15v clamped inductive load v gs = 0v ? = 1.0mhz typ. ??? q1 t j = 25c, i f = 6.1a, v dd = 15v, di/dt = 100a/s  t j = 25c, i s = 6.1a, v gs = 0v  showing the integral reverse p-n junction diode. t j = 25c, i s = 8.8a, v gs = 0v  q2 t j = 25c, i f = 8.8a, v dd = 15v, di/dt = 100a/s  mosfet symbol q2: v ds = v gs , i d = 50a v ds = 16v, v gs = 0v q1 v gs = 20v v gs = -20v v ds = 24v, v gs = 0v conditions q2 conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 7.6a 
  www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics q1 - control fet q2 - synchronous fet typical characteristics fig 3. typical output characteristics fig 4. typical output characteristics fig 5. typical transfer characteristics fig 6. typical transfer characteristics 1.0 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 15v 60s pulse width t j = 25c t j = 150c 1.0 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 15v 60s pulse width t j = 25c t j = 150c 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 150c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 150c 2.5v vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v
  4 www.irf.com q1 - control fet q2 - synchronous fet typical characteristics fig 7. typical capacitance vs. drain-to-source voltage fig 8. typical capacitance vs. drain-to-source voltage fig 9. typical gate charge vs. gate-to-source voltage fig 10. typical gate charge vs. gate-to-source voltage fig 11. maximum safe operating area fig 12. maximum safe operating area 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 5 10 15 20 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 6.1a 0 5 10 15 20 25 30 35 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 8.8a 0.01 0.10 1.00 10.00 100.00 v ds , drain-tosource voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t a = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 100msec 0.01 0.10 1.00 10.00 100.00 v ds , drain-tosource voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t a = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 100msec
  www.irf.com 5 fig 17. typical on-resistance vs.gate voltage q1 - control fet q2 - synchronous fet typical characteristics fig 13. normalized on-resistance vs. temperature fig 14. normalized on-resistance vs. temperature fig 15. typical source-drain diode forward voltage fig 16. typical source-drain diode forward voltage fig 18. typical on-resistance vs.gate voltage -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 7.6a v gs = 10v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 10 15 20 25 30 35 40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c i d = 7.6a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 11a v gs = 10v 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 5 10 15 20 25 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c i d = 11a 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v
  6 www.irf.com q1 - control fet q2 - synchronous fet typical characteristics fig 19. maximum drain current vs. ambient temp. fig 20. maximum drain current vs. ambient temp. fig 21. threshold voltage vs. temperature fig 22. threshold voltage vs. temperature fig 23. maximum avalanche energy vs. drain current fig 24. maximum avalanche energy vs. drain current 25 50 75 100 125 150 t j , ambient temperature (c) 0 2 4 6 8 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.4 1.8 2.2 2.6 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.34a 0.48a bottom 6.1a 25 50 75 100 125 150 t j , ambient temperature (c) 0 2 4 6 8 10 12 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.4 1.8 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.57a 0.77a bottom 8.8a
  www.irf.com 7 fig 25. maximum effective transient thermal impedance, junction-to-ambient (q1) fig 26. maximum effective transient thermal impedance, junction-to-ambient (q2) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 10.908 0.02108 34.35 1.1482 17.15 39.7 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 17.122 0.018925 53.325 0.74555 19.551 39.2 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri fig 27. layout diagram
  8 www.irf.com fig 30a. switching time test circuit fig 30b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 29b. unclamped inductive waveforms fig 29a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 31a. gate charge test circuit fig 31b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 28. 
         for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"         d.u.t. v d s i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -
  www.irf.com 9 so-8 part marking         

  



 



 
  



 
 

 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                            

       

       
     !    " ##       $%   $                   
 

   $  $       &     
 
    

 
                      
       
  so-8 package outline dimensions are shown in milimeters (inches)
  10 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2006 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) n otes: 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters(inches). 3 . outline conforms to eia-481 & eia-541. so-8 tape and reel dimensions are shown in millimeters (inches) 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, q1: l = 7.7mh r g = 25 ? , i as = 6.1a; q2: l = 6.5mh r g = 25 ? , i as = 8.8a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board.   
   & 
 


▲Up To Search▲   

 
Price & Availability of IRF7904PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X